The Scientific Leadership Council of the Pulmonary Hypertension Association

The scientific program of the Pulmonary Hypertension Association is guided by the association's Scientific Leadership Council. The Council includes the following health care professionals:

Michael McGoon, MD
SCL Chair
Pulmonary Hypertension Clinic
Mayo Clinic
Rochester, Minnesota

Robyn J. Barst, MD
SCL Vice-Chair
New York Presbyterian
Pulmonary Hypertension Center
Columbia University College of Physicians and Surgeons
New York, New York

David B. Badesch, MD
Chair, SLC Nominations Committee
University of Colorado
Health Sciences Center
Denver, Colorado

Joy Beckmann, RN, MSN
Pulmonary Hypertension Program
Harbor-UCLA Medical Center
Torrance, California

C. Gregory Elliott, MD
Chair, SLC Publications Committee
LDS Hospital
University of Utah
School of Medicine
Salt Lake City, Utah

Adani Frost, MD
Baylor College of Medicine
Houston, Texas

Sean Gaine, MD, PhD
Mater Misericordiae Hospital
Dublin, Ireland

Nazzareno Galiò, MD
Istituto di Malattie dell’ Apparato Cardiovascolare
Università di Bologna
Bologna, Italy

Marc Humbert, MD, PhD
Hôpital Antoine Béclère
Université Paris-Sud
Clamart, France

Abby Krichman, RRT
Division of Pulmonary and Critical Care Medicine
Duke University Medical Center
Durham, North Carolina

David Langleben, MD
Jewish General Hospital
Montreal, Quebec, Canada

James E. Loyd, MD
Pulmonary and Critical Care Medicine
Vanderbilt University Medical Center
Nashville, Tennessee

Valérie McLaughlin, MD
Rush Presbyterian-St. Luke’s Medical Center
Chicago, Illinois

John H. Newman, MD
Nashville VA Hospital
Nashville, Tennessee

Horst Olschewski, MD
Justus Liebig University
Giessen, Germany

Harold I. Palevsky, MD
University of Pennsylvania
School of Medicine
Presbyterian Medical Center
Philadelphia, Pennsylvania

Marlene Rabinovitch, MD
Stanford University
School of Medicine
Stanford, California

Stuart Rich, MD
Vice-Chair, SLC Research Committee
Rush Heart Institute-Center for Pulmonary Heart Disease
Chicago, Illinois

Ivan M. Robbins, MD
Chair, SLC Consensus Committee
Vanderbilt University
Nashville, Tennessee

Lewis J. Rubin, MD
Chair, SLC Research Committee
University of California at San Diego
San Diego, California

Cathy J. Severson, RN, BSN
Pulmonary Hypertension Clinic
Mayo Clinic
Rochester, Minnesota

Víctor F. Tapson, MD
Division of Pulmonary and Critical Care Medicine
Duke University Medical Center
Durham, North Carolina

Allison Widlitz, PA
Pediatric Cardiology
New York Presbyterian Hospital
New York, New York

Carol E. Vreim, PhD
NHLBI Liaison
Division of Lung Diseases, NHLBI
Bethesda, Maryland

Emeritus:
Bruce H. Brundage, MD
Heart Institute of the Cascades
Bend, Oregon

Alfred P. Fishman, MD
University of Pennsylvania
Health System
Philadelphia, Pennsylvania
Editor’s Memo

Presenting Highlights from Two Exceptional Meetings on Pulmonary Hypertension

Two exceptional meetings this year offered rare opportunities for clinicians involved with pulmonary arterial hypertension to evaluate the progress made in treating this disease. In each case, attendees not only reviewed the progress of recent clinical trials but also looked ahead toward what we can expect in the coming years.

Most of this issue is devoted to highlights from the Third World Symposium on Pulmonary Arterial Hypertension, held from June 23 to 25 in Venice, Italy. This group has been the prime mover in developing criteria for the classification and diagnosis of pulmonary hypertension, and the meeting this year once again demonstrated why the various task forces assembled contribute so much to our understanding of the pathophysiology of the disease and recent advances in diagnosis and treatment.

I want to express my appreciation for the contributions to this issue of Advances in Pulmonary Hypertension from members of the task force committees who provided summaries from their respective sessions and to Nazzareno Galiè, MD, for enabling us to put together this information. The reports from the physicians convey essential information and highlight key issues discussed. They will give you a sense of the excitement we all shared in Venice as we worked toward a consensus on many topics. As assessment and treatment strategies branch in many directions, it is critical for working groups like this to consolidate our knowledge base and seek a consensus that serves as the basis for new guidelines.

The other meeting of major importance was held earlier under the auspices of the National Institutes of Health, in Bethesda, Maryland. The report and interview with the meeting’s chairman, John H. Newman, MD, ranges far and wide over a broad spectrum of topics that will put you on the cutting edge of developments in our field, including priorities for future research.

Victor Tapson, MD
Editor-in-Chief

Profiles in Pulmonary Hypertension

Cardiologist Nazzareno Galiè: A Guiding Light for Worldwide Consensus on Pulmonary Hypertension

If anyone is keeping track of the number of scientific publications on pulmonary arterial hypertension (PAH), pulmonary embolism, chronic heart failure, and heart transplantation authored or coauthored by Nazzareno Galiè, MD, the total has reached more than 280. But that impressive figure is only one measure of the stature of Dr Galiè as a world-class investigator in this field. Dr Galiè's influence extends far beyond the borders of his native Italy where he is Head of the Pulmonary Hypertension Center at the University of Bologna.

Evidence of his influence on state-of-the-art knowledge in PAH is apparent in this issue as he analyzed highlights from the Third World Symposium on Pulmonary Hypertension held in Venice from June 23 to 25. As one of the organizers of this symposium, Dr Galiè helped bring together cardiologists and pulmonologists from leading research centers around the world to address topics of central importance to clinicians involved with the disease.

Aside from postdoctoral training in London and at the University of Arkansas, Dr Galiè has spent his entire career at the Institute of Cardiology, University of Bologna, where he is looked to as one of the guiding lights for European research in PAH. This is the program that kindled his interest in PAH soon after he wrote his doctoral thesis on the topic. As his interest in this field grew, he became more interested in PAH because it lacked a cure and other clinicians began sending more patients with PAH to Bologna for treatment. The University of Bologna’s program earned a reputation as one of the centers of excellence for the treatment of PAH.

By the late 1990s, his center became one of the pivotal locations in Europe for investigations on new drugs being developed for PAH, including treprostinil, bosentan, beraprost, and iloprost. More recently, Dr Galiè’s group has been involved in an international study on the effects of sildenafil in PAH, results of which are expected early in 2004. Working with colleagues in Europe and the United States, Dr Galiè has served on numerous committees to evaluate the effects of the new agents, and in particular he has led the first double-blind, placebo-controlled study on the effect of the endothelin receptor antagonist bosentan (continued on page 21)
NIH Conference Charts Future Directions in Identifying Patients at Risk for Primary Pulmonary Hypertension

This report is based on information presented at a conference sponsored by the National Institutes of Health (NIH) earlier this year to identify trends in diagnosis and management of the disease.

As diagnostic and treatment approaches to pulmonary hypertension evolve over the next few years, clinicians may look back at an NIH conference held earlier this year as a watershed, a meeting where many of the new directions in care were charted.

The meeting, Translational Research in Primary Pulmonary Hypertension, was sponsored by the National Heart, Lung and Blood Institute and brought together leading experts to explore ways in which basic research may translate into clinical trials and related investigative work. Organized by Dorothy B. Gail, PhD, Director of Lung Biology and Disease in the Division of Lung Diseases at the NIH, the meeting provided a venue for reviewing new data and concepts, including recent findings in genetics and molecular medicine, as investigators discussed results from studies in transgenic mice and data about modulators for angiogenesis. One of the goals of the meeting was to provide the NIH with information on the kinds of research it may want to encourage, according to John H. Newman, MD, Professor of Medicine, Pulmonary Critical Care Division, Vanderbilt University School of Medicine, Nashville, Tennessee. The talks ranged across a broad spectrum of topics but generally relate to implications for the pathogenesis and treatment of primary pulmonary hypertension.

One of the areas covered involved potassium and calcium channel function, as delineated by Steven L. Archer, MD. “Information from various studies suggests that an alteration in channel function may be involved with determining whether potassium or calcium can enter or exit cells and whether they will contract. This issue is especially important for smooth muscle cells in the vascular bed, because if they contract, they cause vasoconstriction and raise pulmonary vascular resistance, and can exacerbate pulmonary hypertension,” said Dr Newman.

The second group of talks was concerned with signal transduction, which is related to the manner in which circulating molecules activate cells. Serotonin was a chief consideration in this discussion, because it is a mediator that enters cells through a transporter, and once in cells, it activates certain pathways that may lead to new growth of vascular cells and production of collagen. This process may promote occlusion of vessels as seen in pulmonary hypertension. This is important because it is known that blood vessels in the lung become occluded through a process in which fibrosis results in blockage of the central channel.

One of the exciting areas covered at the conference included work being done on transgenic models of pulmonary hypertension. Mutations in the BMPR-2 gene are a hereditary cause primary familial hypertension. William C. Nichols, PhD, and David Rodman, MD, have used transgenic mice with this gene altered so that we have an animal model that can mimic situations of primary pulmonary hypertension. They presented information on these models and what directions research will take with these animal models. “The hope is that over the next couple of years we will be able to further characterize animal models of pulmonary hypertension, which will lead to a better understanding of how to treat the disease. Currently the transgenic model is still too early in development to have produced any striking leads, but our expectations are high,” said Dr Newman.

The discussion of genetic factors involved in pulmonary hypertension continued with presentations on genetic modifiers by Jane Morse, MD, and James A. Knowles, MD, PhD, who focused on the concept of genetic susceptibility to primary pulmonary hypertension. “We know from patients who are in families where the disease is highly prevalent that there is a mutation in a receptor, called BMPR-2,” said Dr Newman. “Even if a person has a mutation, there is only about a 20% risk of getting the disease in his or her lifetime, so there must be other factors that increase the risk—either other mutations or just other genetic characteristics. For virtually every characteristic there are multiple genetic modifications, sometimes called polymorphisms. Nationally and internationally, the effort to identify the genetic makeup that may predispose to pulmonary hypertension is growing stronger. It will turn into a big project over the next 5 to 10 years as we examine the genome to determine the kinds of differences that leave some patients at greater risk. For example, why did some people who took fenphen develop pulmonary hypertension? What are the underlying susceptibilities to that?”

Looking ahead to the most promising therapeutic strategies, presenters examined the relative merits of different approaches, particularly combinations of agents. “Everyone has been very excited about the advent of endothelin blockers and sildenafil,” noted Dr Newman. “Now the question is, what kind of combinations should we use? Should we start oral drugs first and not use prostacyclin drugs until the oral therapy fails? Or will patients fare better if they undergo treatment with multiple drugs, such as we discovered with cancer therapy? In animal models, statins look very promising and they deserve clinical study because it is clear that they are useful in other vascular diseases. Sildenafil is also very exciting. In terms of feasible new approaches, the statins seem to be promising, but we are 2 to 3 years away from having specific drugs that may target other mechanisms such as serotonin or the mechanisms involving TGF-beta and potassium channels. These approaches are not quite ready but in the next 3 to 5 years we should have other new drugs with potential benefit.”

Where does that leave prostacyclin, still considered the cornerstone of therapy? “Prostacyclin remains the gold standard and is the agent we would all like to see another drug supercede. The goal is to get people off of prostacyclin as primary therapy, both for cost and for safety reasons. That’s where we want to be headed.”
One of the ultimate goals is to initiate treatment in patients predisposed to pulmonary hypertension as early as possible. “Familial pulmonary hypertension affords a unique opportunity to identify people who have a mutation and who could be candidates for preventive therapy,” added Dr Newman. The problem in managing the “sporadic” patients is that preventive treatment cannot be used. This is because disease is already advanced when the diagnosis is made. This is why the identification of patients at risk for familial disease is so exciting. “The cases that we may be able to prevent are those persons who have a mutation but don’t have any disease. They are clinically completely normal. If the statins seem to work, we could potentially design a study that might involve administering statins, plus several other drugs, to patients who have the mutation but are clinically normal to determine whether we could prevent pulmonary hypertension from developing.”

Despite the promise of genetic testing suggested by the NIH conference, Dr Newman said it remains a long way from being routinely applied in clinical practice. “The problem is that in the general population, primary pulmonary hypertension is too rare to test the whole population. The cost is prohibitive. It would not be cost-effective if only one person in a million gets the disease. Genetic testing will be done in families where we know that mutations exist and potentially in patients who already have the disease but are the only affected person in a family. The current problem is that the gene is so large, with so many mutation sites, that no laboratory has been able to develop a feasible test. What will emerge from genetic testing and preventive therapy is a clearer understanding of what causes primary pulmonary hypertension and where we can successfully direct therapy. This will be a wonderful development.”

A Who’s Who from the NIH Conference on Primary Pulmonary Hypertension

A conference earlier this year sponsored by the National Heart, Lung, and Blood Institute of the National Institutes of Health drew experts from around the country and Canada to discuss new directions in research. This conference, Transactional Research in Primary Pulmonary Hypertension, was chaired by John H. Newman, MD, Chief, Medical Service, VA Medical Center, and Professor at Vanderbilt University School of Medicine, Nashville, Tennessee.

The conference, held in Bethesda, Maryland, also included: Cochairman, Barry L. Fanburg, MD, Professor of Medicine, Department of Medicine, Pulmonary and Critical Care Division, New England Medical Center, Boston, Massachusetts.

Participants included:

Steven L. Archer, MD
Professor of Medicine, Division of Cardiology, University of Alberta Hospital, Edmonton, Alberta, Canada

David Badesch, MD
Professor of Medicine, Department of Medicine, University of Colorado Science Center, Denver, Colorado

Robyn J. Barst, MD
Professor of Pediatrics, Division of Pediatric Cardiology, Columbia University College of Physicians and Surgeons, New York, New York

Joe G.N. Garcia, MD
Professor, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland

Peter N. Kao, MD, PhD
Associate Professor, Medicine/Pulmonary and Critical Care, Stanford University Medical Center, Stanford, California

James A. Knowles, MD, PhD
Associate Professor, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York

James E. Loyd, MD
Professor of Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee

Michael D. McGoon, MD
Cardiologist, Department of Cardiology, Mayo Clinic, Rochester, Minnesota

Jane Morse, MD
Professor, Department of Medicine, Columbia University, New York, New York

William C. Nichols, PhD
Associate Professor, Division and Program in Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio

Marlene Rabinovitch, MD
Professor, Department of Pediatrics, Stanford University School of Medicine, Stanford, California

David Rodman, MD
Professor, Department of Medicine, University of Colorado Health Science Center, Denver, Colorado

Ivan Robbins, MD
Assistant Professor of Medicine, Director, Adult Allergy Pulmonary Hypertension Center, Vanderbilt University Medical Center, Nashville, Tennessee

Troy Stevens, PhD
Associate Professor, Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama

Rubin M. Tuder, MD
Associate Professor of Pathology and Medicine, Director of Pulmonary and Critical Care Medicine, Director, Division of Cardiopulmonary Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
Recapping Highlights from the Third World Symposium on Pulmonary Arterial Hypertension, Venice, Italy, June 23-25, 2003

As the broad range of topics suggests, the Third World Symposium on Pulmonary Arterial Hypertension (PAH) addressed many of the issues of overriding importance to clinicians involved with treatment of the disease. Held in Venice, Italy, from June 23 to 25, the symposium attracted key opinion leaders from Europe and the United States whose research has put them on the frontier of advances in PAH. The symposium assigned topics to various task forces that met and worked toward a consensus document for key issues, such as appropriate diagnostic algorithms, functional capacity tests, and the use of echocardiography and other noninvasive tests.

The summaries presented in this issue highlight many of the trends observed by task force members in Venice and suggest future directions for research in PAH. The World Symposium on Pulmonary Arterial Hypertension has helped formulate definitions and classifications that contribute toward an improved understanding of the pathophysiology of PAH and have produced algorithms that help guide treatment strategies. A list of the task force members follows along with the topics assigned to them.

A Meeting of the Minds in Venice: A Roster of Attendees and Assignments

This listing of physicians indicates who attended the Third World Symposium on Pulmonary Hypertension and the Task Forces to which they were assigned as groups worked toward a consensus on selected topics. The Scientific Organizing Committee included three physicians in Europe and three in the United States. In Europe: Nazzareno Galiè, Bologna, Italy, Werner Seeger, Giessen, Germany, and Gérald Simonneau, Clamart, France. In the US, the committee included Robyn J. Barst, New York, New York, Stuart Rich, Chicago, Illinois, and Lewis J. Rubin, La Jolla, California.

Task Force on Genetics
Committee: Chairman and Secretary: Gregory Elliott, Salt Lake City, Utah; Chairs: John H. Newman, Nashville, Tennessee; and Richard C. Trembath, Leicester, UK.
Members: Serge Adnot, Cretail, France; Fabio Cocco, Bologna, Italy; Oliver Eickelberg, Giessen, Germany; Ekkehard Gruenig, Heidelberg, Germany; James A. Knowles, New York, New York; James E. Loyd, Nashville, Tennessee; Jane H. Morse, New York, New York; William C. Nichols, Cincinnati, Ohio; John A. Phillips III, Nashville, Tennessee; Werner Seeger, Giessen, Germany; and Carlo Ventura, Sassari, Italy.

Task Force on Pathology and Pathobiology
Committee: Chairman and Secretary: Marc Humbert, France
Chairs: Giuseppe Pietra, Switzerland; Marlene Rabinovitch, Stanford, California; Norbert F. Voelkel, Denver, Colorado.
Members: Stephen L. Archer, Edmonton, Canada; Frederique Capron, Paris, France; Brian Christman, Nashville, Tennessee; Friedrich Grimminger, Giessen, Germany; Sheila G. Haworth, London, UK; Phillipe Hervé, Le Plessis Robinson, France; Irene Lang, Vienna, Austria; Ornella Leone, Bologna, Italy; Margaret R. MacLean, Glasgow, UK; Nick W. Morrell, Cambridge, UK; Lynne M. Reid, Boston, Massachusetts; Kurt Stenmark, Denver, Colorado; Susan Stewart, Cambridge, UK; Rubin Tuder, Baltimore, Maryland; and E. Kenneth Weir, Minneapolis, Minnesota.

Task Force on Epidemiology, Nomenclature and Classification
Committee: Chairman and Secretary: Gérald Simonneau, Clamart, France; Chairs: Lucien Abenhaim, Paris, France; Alfred P. Fishman, Philadelphia, Pennsylvania.
Members: Guido Domenighetti, Locarno, Switzerland; Nazzareno Galiè, Bologna, Italy; Simon Gibbs, London, UK; Miguel A. Gomez-Sanchez, Madrid, Spain; David Langleben, Montreal, Canada; Didier Lebrec, Paris, France; Nick W. Morrell, Cambridge, UK; Robert Naeljoe, Brussels, Belgium; Stuart Rich, Chicago, Illinois; Lewis J. Rubin, La Jolla, California; Werner Seeger, Giessen, Germany; and Rudolf Speich, Zurich, Switzerland.

Task Force on Diagnosis and Assessment
Committee: Chairman and Secretary: Robyn J. Barst, New York, NY; Chairs: Michael D. McGoon, Rochester,
Minnesota; Adam Torbicki, Warsaw, Poland.

Members: Joan Albert Barbera, Barcelona, Spain; Richard N. Channick, La Jolla, California; Gerry Coghlan, London, UK; Marion Delcroix, Leuven, Belgium; Peter F. Fedullo, La Jolla, California; Adaani E. Frost, Houston, Texas; Sean P. Gaine, Dublin, Ireland; Ardeschir Ghofrani, Giessen, Germany; Marius M. Hoeper, Hannover, Germany; Marc Humbert, Clamart, France; Meinhard Kneussel, Vienna, Austria; Michael J. Krowka, Rochester, Minnesota; Alessandra Manes, Bologna, Italy; Horst Olschewski, Giessen, Germany; Ronald J. Oudiz, Torrance, California; Andrew J. Peacock, Glasgow, UK; Joanna Pepke-Zaba, Cambridge, UK; Ivan M. Robbins, Nashville, Tennessee; Olivier Sitbon, Clamart, France; Victor F. Tapson, Durham, North Carolina; Jean-Luc Vachiéry, Brussels, Belgium; and Carmine Dario Vizza, Rome, Italy.

Task Force on Medical Treatments

Committee: Chairman and Secretary: Nazzareno Galiè, Bologna, Italy; Chairs: Lewis J. Rubin, La Jolla, California; Werner Seeger, Giessen, Germany.

Members: David B. Badesch, Denver, Colorado; Joan Albert Barbera, Barcelona, Spain; Robyn J. Barst, New York, New York; Ardeschir Ghofrani, Giessen, Germany; Sheila G. Haworth, London, UK; Marius M. Hoeper, Hannover, Germany; Marc Humbert, Clamart, France; Ann Keogh, Sydney, Australia; Vallerie V. McLaughlin, Ann Arbor, Michigan; Horst Olschewski, Giessen, Germany; Ronald J. Oudiz, Torrance, California; Andrew J. Peacock, Glasgow, UK; Gerald Simonneau, Clamart, France; Olivier Sitbon, Clamart, France; Gianni Tognoni, Milan, Italy; and Adam Torbicki, Warsaw, Poland.

Task Force on Interventional and Surgical Treatments

Committee: Chairman and Secretary: Paul Corris, Newcastle, UK; Chairs: Stuart W. Jamieson, San Diego, California; Walter Klepetko, Vienna, Austria.

Members: Phillipe Daréveille, Le Plessis Robinson, France; Peter F. Fedullo, La Jolla, California; Michael J. Landzberg, Boston, Massachusetts; Irene Lang, Vienna, Austria; Eckhard Mayer, Mainz, Germany; Joanna Pepke-Zaba, Cambridge, UK; Julio Sandoval, Mexico City, Mexico; Elbert P. Trulock, St. Louis, Missouri; Jean-Luc Vachiéry, Brussels, Belgium.

Task Force on Future Directions

Committee: Chairman and Secretary: Stuart Rich, Chicago, Illinois; Chairs: Robert Naeije, Brussels, Belgium; Andrew J. Peacock, Glasgow, UK.

Members: Brian Christman, Nashville, Tennessee; Gerry Coghlan, London, UK; Oliver Eickelberg, Giessen, Germany; Sean P. Gaine, Dublin, Ireland; Friedrich Griminger, Giessen, Germany; Tim Higenbottam, Sheffield, UK; Stefan Janssens, Leuven, Belgium; John H. Newman, Nashville, Tennessee; Marlene Rabinovitch, Stanford, California; Richard C. Trembath, Leicester, UK; Norbert F. Voelkel, Denver, Colorado; and E. Kenneth Weir, Minneapolis, Minnesota.

Previewing the Winter 2003 Issue of Advances in Pulmonary Hypertension

The Editors of *Advances in Pulmonary Hypertension* are pleased to present an entire issue focusing on Future Directions in Pulmonary Hypertension.

Topics will include:

- Future Directions in Investigative Therapies
- Advances in Diagnostic Techniques and Strategies and New Thinking on End Points
- New Concepts About the Underlying Mechanisms of the disease
- A Roundtable Discussion With Leading Experts in PH from the US and UK

Coming to You in December 2003
Detection

Incidental

Symptoms

Screen

History, physical examination

CXR
ECG
TT Echo

PH suspected

• No significant sx; studies neg
 • RVSP <36 or TR vel <2.8

• Discrepant sx and/or studies
 • RVSP ? or 36-50
 • TR vel = 2.8-3.4

• RVSP ≥ 50
 • TR vel ≥ 3.4

• PAPs >45 mm Hg
 • PAPm >35 mm Hg

No further work-up for PH

NYHA I

• Rule out CTD
 • Re-examine in 1 year or pm

NYHA II-IV

Symptoms

Confirmatory right heart catheterization

• PAPs 35-45 mm Hg
 • PAPm 25-35 mm Hg

• PAPs >35 mm Hg
 • PAPm >25 mm Hg

? Exercise PAPs or RVSP

Acute vasodilator study

• PAPs 35-45 mm Hg
 • PAPm 25-35 mm Hg

• PAPs >35 mm Hg
 • PAPm >25 mm Hg

• PAPs <35 mm Hg
 • PAPm <25 mm Hg

No further work-up for PH

• PAPs <35 mm Hg
 • PAPm <25 mm Hg

Screen

Incidental

Symptoms

No further work-up for PH

Acute vasodilator study

• PAPs 35-45 mm Hg
 • PAPm 25-35 mm Hg

• PAPs >35 mm Hg
 • PAPm >25 mm Hg

• PAPs <35 mm Hg
 • PAPm <25 mm Hg
Clinical Algorithm

Diagnosis and Assessment of Pulmonary Hypertension

Michael D. McGoon, MD
Department of Cardiology
Mayo Clinic
Rochester, Minnesota

Characterization

Sleep studies

CTD evaluation

ABGs, O₂ saturation, pulmonary function testing

TEE

V/Q scan

HRCT

CHD, LV or valve disease

Further evaluation or treatment appropriate for lesion

No other lesion

No perfusion defect

Any subsegmental defect

Any segmental defect

Functional assessment

Spiral or EBCT, or MRI

Spiral or EBCT, or MRI

No PE

PE

No PE

Right heart catheterization

Pulmonary angiography

ILD

Plus

No

No PE
November is **Pulmonary Hypertension Awareness Month**

This year’s theme is **Pulmonary Hypertension: The Other High Blood Pressure.** The more people are aware of the seriousness of this illness, the more support they will offer. In addition, with increased awareness among the general public and medical professionals, more people will be diagnosed early.

If you would like to help raise awareness about pulmonary hypertension, please consider the following options:

- Host a Q&A session at your local hospital
- Order and distribute printed materials from Pulmonary Hypertension Association to your patients
 - Display an awareness month poster in your office and/or hospital
 - Be the guest speaker at a local support group. Visit http://www.phassociation.org/SupportGroups/ to find a support group near you

For additional ideas, order a complete Awareness Month Action Kit, available now! Contact Cara Ugolini at (301) 565-3004 x113 or cara@phassociation.org or visit the website at http://www.phassociation.org/Awareness/AwarenessMonth.asp

The Pulmonary Hypertension Association announces the

2004 Postdoctoral Fellowship Awards Application Process

$30,000 stipend per year/$5,000 project support per year for two years

Application Deadline: January 15, 2004
Award Notification: June 1, 2004
Award Activation: July, 2004

Suggested investigation topics include, but are not limited to:

- Genetics
- Molecular biology of pulmonary vascular endothelium
- Development of new pharmacologic agents to treat PH
- Development of innovative techniques for early diagnosis
- Pathophysiology of right heart failure
- Epidemiology of risk factors for developing PH

For More Information Visit
www.phassociation.org/support/researchfunding.htm
Endothelin (ET) concentrations are elevated in the plasma and lung tissue of patients with pulmonary arterial hypertension (PAH), suggesting a pathogenic role for ET in PAH. The effects of ET are mediated by binding to ET\(_{\alpha}\) and ET\(_{\beta}\) receptors. Only Tracleer is a specific and competitive antagonist for both ET receptors.

- Improves exercise ability
- Improves hemodynamics (CI, PAP, PVR, RAP)
- Decreases rate of clinical worsening

Important safety information

- Requires attention to two significant concerns
 - Potential for serious liver injury: Liver monitoring of all patients is essential prior to initiation of treatment and monthly thereafter
 - Potential damage to a fetus: Pregnancy must be excluded and prevented; monthly pregnancy tests should be obtained
- Contraindicated for use with cyclosporine A and glyburide

Tracleer Access Program (TAP)
- Prescriptions can be filled only through TAP
- Call 1-866-228-3546 for a Patient Enrollment Form

Clinical worsening defined as combined endpoint of death, hospitalization or discontinuation due to worsening PAH, or initiation of epoprostenol therapy
Use of TRAJECTR requires serious consideration. It is not suitable for pregnant women, and may be harmful to male and female patients, and may be harmful to human reproduction.
Task Force on Diagnosis and Assessment: Identifying the Most Useful Tools

Robyn J. Barst, MD
New York Presbyterian Pulmonary Hypertension Center,
Columbia University College of Physicians and Surgeons, New York, New York

A diagnostic algorithm that is accepted among experienced centers (Pull-Out, next page) can guide the evaluation of pulmonary hypertension. Like all guidelines, the algorithm may be modified according to specific clinical circumstances. Most patients are diagnosed as the result of an evaluation of symptoms, while others are diagnosed during screening of asymptomatic populations at risk. Symptomatic patients should be managed with an aggressive therapeutic strategy to reduce symptoms, improve hemodynamics, and prolong survival. Asymptomatic or incidentally discovered subjects should be managed with conservative treatment (depending on the severity of the hemodynamic abnormality), identification of reversible underlying causes, and close monitoring for progression.

A high level of suspicion is of paramount importance for the diagnosis of pulmonary hypertension regardless of underlying cause. Once suspect, a methodical workup using commonly employed diagnostic interventions allows confirmation of the presence of pulmonary hypertension and elucidation of its etiology. Clarification of etiology is necessary to ensure that the proper therapeutic interventions are implemented.

In patients with a suspicion of, or risk of, pulmonary arterial hypertension (PAH), the physical examination should be performed to assist in directing further evaluation to more specific and efficient assessment for defining the presence, severity and substrate of PAH. In addition, an ECG should be performed to screen for a spectrum of cardiac and arrhythmic problems. Although an ECG lacks sufficient sensitivity to serve as an effective screening tool for PAH, it does contribute some prognostic information in patients with known idiopathic PAH. A chest X-ray should also be obtained to reveal features supportive of a diagnosis of PAH and lead to diagnoses of underlying diseases.

Doppler echocardiography should be performed as an appropriate and useful screening tool to detect clinically significant degrees of elevated pulmonary pressure, although in some patients it may be imprecise in determining actual pressures (compared with invasive evaluation). In patients with high-risk substrates, eg, systemic sclerosis, family history of idiopathic PAH, known genetic predisposition, Doppler echocardiography should be performed periodically, ie, every 1 to 3 years, to screen for possible development of clinically significant degrees of elevated pulmonary pressure. Doppler echocardiography should also be obtained in patients with suspected or documented pulmonary hypertension to look for left ventricular systolic and diastolic dysfunction, left-sided chamber enlargement, or valvular heart disease, any of which may cause or contribute to pulmonary hypertension and may be treatable. A contrast study during Doppler echocardiography is also useful to look for evidence of intracardiac shunting.

Screening for connective tissue disease and HIV infection by serologic testing (along with appropriate history and physical examination) should also be performed in patients with suspected or documented pulmonary hypertension. A ventilation-perfusion lung scan should be performed to rule out chronic thromboembolic pulmonary hypertension; a negative scan effectively excludes a diagnosis of chronic thromboembolic pulmonary hypertension. Contrast-enhanced computed chest tomography or magnetic resonance imaging can provide useful morphologic information, but should not be relied upon to unequivocally exclude chronic thromboembolic pulmonary hypertension. In patients with a V/Q scan suggestive of chronic thromboembolic pulmonary hypertension, pulmonary angiography is required for accurate diagnosis and best anatomic definition. Contrast enhanced computed chest tomography or magnetic resonance imaging can be obtained to provide complementary morphologic, functional and prognostic information.

Pulmonary function testing and arterial blood gas measurements should be performed to evaluate potentially contributory ventilatory factors and diffusion abnormalities. In patients with systemic sclerosis, pulmonary function testing should be performed periodically, ie, every 6 to 12 months, to detect deteriorating DLCO as a sign of progressive pulmonary vasculopathy.

Lung biopsy is not recommended because of the risk in patients with suspected or documented pulmonary hypertension, except under circumstances in which a specific question can be answered only by tissue examination. Finally, right heart catheterization is required in patients with suspected pulmonary hypertension to establish the diagnosis of pulmonary hypertension and document pulmonary hemodynamics. Furthermore, prior to initiation of medical therapy, assessment of vasodilating capacity (during the right heart catheterization) is required to determine the appropriate therapy for an individual patient.

Techniques that have recently been evaluated to predict disease severity include: assessment of right ventricular function, using Doppler echocardiographic semi-quantitative indices, functional class, exercise testing, ie, exercise endurance assessed by a 6-minute walk test and exercise tolerance assessed with cardiopulmonary exercise testing, and demographic and hemodynamic parameters. Neurohormone levels, such as BNP and ANP, have recently been demonstrated to correlate with survival, and norepinephrine and endothelin-1 levels also appear to be useful parameters of disease severity. In addition, uric acid levels have been reported to correlate with the severity of PAH.

Some of these modalities may provide prognostic information that is similar to that derived from invasive tests and may be more useful and convenient in assessing treatment efficacy.
Medical scientists have achieved three major goals proposed by the 1998 Evian task force on the genetics of pulmonary hypertension. First, mutations in the gene that codes for bone morphogenetic protein receptor 2 (BMPR2) are linked to familial primary pulmonary hypertension. BMPR2 mutations are detectable in approximately half of the families affected by primary pulmonary hypertension. The gene that codes for BMPR2 is large (13 exons) and already more than 26 mutations are described. Second, many patients with apparently sporadic primary pulmonary hypertension have mutations of the gene that codes for BMPR2. This observation, combined with observations of common ancestors among patients with apparently sporadic primary pulmonary hypertension, indicates that an inherited basis underlies many cases of primary pulmonary hypertension. However, the relatively low penetrance of these mutations (only 15% to 20% of persons carrying a BMPR2 mutation develop clinically evident disease in their lifetime) makes identification of familial disease difficult. Third, BMPR2 mutations are rare in other classifications of pulmonary arterial hypertension, eg, pulmonary arterial hypertension associated with CREST, HIV infection, or fenfluramine exposure. Rare cases of pulmonary arterial hypertension with BMPR2 mutations and fenfluramine exposure raise the possibility of disease triggered by genetic predisposition and an environmental trigger.

The exact pathogenesis of familial primary pulmonary hypertension remains elusive in spite of the identification of BMPR2 mutations. The identification of abnormalities in other TGF beta receptors [ALK-1; TGF beta R2, and BMPR1A (ALK3)] suggests that dysfunctional TGF beta receptors are important in the pathogenesis of familial primary pulmonary hypertension. Indeed, TGFbeta represents a classic pleiotropic mediator to the vascular system by modifying growth, differentiation, and death of vascular cells. Nevertheless, other genes and/or environmental factors must also be important in order to explain the reduced penetrance of BMPR2 mutations. Genes that control nitric oxide synthesis, serotonin transport, or prostacyclin may prove important to the expression of disease. Animal models (eg, mice) allow study of genetic alterations of BMPR2 as well as other pathways, eg, serotonin. Inactivation of BMPR2 in mice leads to pre- and perinatal mortality because of abnormal mesoderm formation, illustrating the potential of BMPR2 mutations to cause vascular disease. To date, scientists have not been able to reproduce primary pulmonary hypertension in mouse models, but this remains an important goal for future research.

The discovery of mutations in the gene that codes for BMPR2 makes genetic testing and counseling possible. In the future such tests may corroborate diagnostic impressions and provide estimates of an individual’s risk to develop primary pulmonary hypertension. The use of such tests requires an understanding of the meaning of the test results, as well as the risks and benefits of this knowledge to those who are tested and to other family members. Before and after the tests, education and counseling will be necessary, especially because the penetrance of known BMPR2 mutations is low and because the results may prove psychologically (eg, depression, anxiety) or socially (eg, employment barriers and effects on insurability) harmful.

For these reasons genetic testing for BMPR2 mutations will require adherence to basic rules. Informed consent is essential when a test can be linked to an individual. The consent should be voluntary, without coercion or intimidation; and patients should be assured that their care is unaffected by decisions to forego genetic tests. In addition confidentiality of results must be assured.

Genetic tests for mutations associated with primary pulmonary hypertension are not available in the United States. The BMPR2 gene is large, making tests expensive unless the test is directed at a known mutation. For these reasons the task force concluded that genetic testing needs development and is not ready for widespread implementation.

Overview of Genetics as presented at the PAH Symposium in Venice

C. Gregory Elliott, MD
LDS Hospital, University of Utah School of Medicine, Salt Lake City, Utah

... over time. These newer tools may also enhance predictive accuracy when used in combination with the “standard” testing modalities. Many of these variables have been shown to correlate with one another; thus, which parameters will prove to be the most useful in assessing disease severity requires further investigation. Importantly, all of the above studies evaluated idiopathic PAH patients but not patients with PAH related to connective tissue disease, congenital heart disease, anorexigen, HIV infection, or portal hypertension. Thus, these parameters must be applied cautiously to PAH patients in whom comorbid factors may contribute significantly to overall outcome, eg, in general, patients with PAH related to connective tissue disease have a worse prognosis than idiopathic PAH patients, whereas patients with PAH related to congenital heart disease have a much more slowly progressive course than do patients with idiopathic PAH.

In conclusion, PAH is diagnosed by following a careful series of investigations that include tests that are regarded as essential in making the diagnosis, as well as additional tests that may help clarify the category of pulmonary hypertension present. Disease severity can be evaluated by several modalities that are complementary and that together are useful in helping to choose therapy and evaluate the response to therapy. Close follow-up at a center specializing in pulmonary hypertension is recommended, with careful monitoring at frequent intervals of the course of the disease.
Pathophysiology of Pulmonary Hypertension: Recognizing Triggers of the Disease

Marc Humbert, MD, PhD
Centre des Maladies Vasculaires Pulmonaires, Hôpital Antoine Béclère, Université Paris-Sud, Clamart, France

It is unclear whether the various types of PAH share a common pathogenic mechanism. Although our understanding of the pathobiological changes underlying PAH has progressed rapidly over the past few years, it is still impossible to classify patients on a pathogenic basis and to define therapeutic approach accordingly. Three factors are considered to cause the increased pulmonary vascular resistance in PAH: vasoconstriction, remodeling of the pulmonary vessel wall, and thrombosis in situ. The latter two are easily evident with light microscopy, whereas vasoconstriction is best demonstrated by vasodilator testing. Most specialists now agree that pulmonary vascular proliferation and remodeling, and not vasoconstriction, is the hallmark of PAH pathogenesis.

Bone morphogenetic protein receptor 2 and related molecules

The recent identification of a pulmonary hypertension gene (bone morphogenetic protein receptor 2, BMPR2, a member of the transforming growth factor beta superfamily) provides the opportunity to develop a deeper understanding from a molecular biology perspective. Heterogeneous germline mutations in BMPR2 occur in approximately 60%, 25%, and 10% of patients with familial, sporadic, and fenfluramine derivatives-associated PAH, respectively. In addition, germline mutations in the gene coding activin-like receptor kinase 1, another member of the transforming growth factor beta superfamily, have been identified in patients with hereditary hemorrhagic telangiectasia. These patients develop severe plexiform pulmonary (or idiopathic) hypertension, which is symptomatically indistinguishable from PPH. The relevance of the transforming growth factor beta superfamily in the etiology of PAH is further supported by a recent report of endoglin germline mutation in a patient who had hereditary hemorrhagic telangiectasia and dexfenfluramine-associated PAH. These observations support the hypothesis that mutations in the transforming growth factor beta superfamily may be a trigger for pulmonary vascular remodeling.

The transforming growth factor beta superfamily is diverse, comprising transforming growth factor beta isoforms, the bone morphogenetic proteins, activins, and growth and differentiation factors. A possible mechanism whereby such a mutation could trigger remodeling is emerging from studies on BMPR2. BMPR2 mediates its actions by binding ligand in conjunction with a type I receptor to form a heterodimer complex on the cell surface and subsequently propagate an intracellular signal via Smad molecules. As BMPR2 is involved in cell proliferation and apoptosis, the occurrence of a mutation in this protein could result in abnormal signaling in pulmonary artery smooth muscle cells, leading to loss of antiproliferative or apoprotic mechanisms. This theory is supported by the demonstration of dysregulated growth inhibition of pulmonary artery smooth muscle cells from patients with PPH exposed to bone morphogenic proteins and transforming growth factor beta. In fact, additional findings suggest that all forms of pulmonary hypertension may be linked to defects in the signaling pathways involved in angiogenesis, such as angiopoietin-1 and bone morphogenetic protein receptors. The possible involvement of the transforming growth factor beta superfamily in the pathophysiology of PAH may have identified a novel target for therapeutic intervention.

Modifier genes and environmental factors

As PAH develops in only 10% to 20% of individuals with BMPR2 mutations, the contribution of other factors for the development of PAH is undeniable. The “multiple hit” hypothesis has been proposed whereby the combination of a number of factors may precipitate the disease. In such a scenario, a susceptible individual with a BMPR2 mutation would require additional insults such as exposure to anorectic drug before manifesting PAH. Another theory is that of the role of modifier genes in the pathogenesis of PAH. As recently detailed by Runo and Loyd in their Lancet review, genes and gene products putatively implicated in the pathogenesis of PAH include prostacyclin synthase, nitric oxide synthase, serotonin transporter, serine elastases, matrix metalloproteinases, voltage-gated potassium channels, angiotensin-converting enzyme, vascular endothelial growth factor, carbamoyl phosphate synthase, plasminogen activator inhibitor type 1, and endothelins.

Endothelial dysfunction

Recent advances in the understanding of the molecular mechanisms involved in PAH suggest that endothelial dysfunction could correspond to downstream manifestations of the disease rather than a central pathogenic mechanism. There is now considerable evidence that endothelial dysfunction leading to exaggerated vasoconstriction, and impaired vasodilatation plays a key role in PAH. Interestingly, chronically impaired production of vasodilators such as nitric oxide and prostacyclin along with prolonged overexpression of vasoconstrictors such as endothelin-1 not only affect vascular tone, but also promote vascular remodeling and therefore represent a logical pharmacological target.
The recent clinical trials with novel compounds have produced a tremendous increase of both knowledge and therapeutic options in patients with pulmonary arterial hypertension (PAH). The analysis of placebo-treated groups in the various trials has allowed a better understanding of the natural history of PAH on conventional treatment. In fact, signs of functional and hemodynamic deterioration are detectable as early as after 3 months in previously stable patients. The new trials have similar designs, duration, and end points but relevant differences including the baseline NYHA functional class and the etiology profiles need to be taken into account in the comparative evaluation of these studies. Each new compound presents side effects that are unpredictable in the individual patient and require an appropriate attention upon treatment initiation and maintenance. The lack of effect on mortality can be explained by the study protocols that were not designed for assessing this end point and by the overall low mortality of the study populations as compared with the historical controls. Extension, open label studies will help us to understand whether the favorable effects and safety profiles observed in the randomized phases are maintained over the long term. Unfortunately, in these cases, the effects on mortality can be assessed only by comparison with historical controls.

The discussion in the Task Force on Medical Treatments of the 3rd WSPAH has been focused on the attempt to derive an evidence-based treatment strategy that includes all available treatments already approved or tested. The treatment strategy is targeted to patients in NYHA functional class III and IV, which is the patient population predominantly enrolled in clinical trials. For NYHA functional class I and II patients the most appropriate strategy is yet to be determined.

The traditional approach to treat patients with oral anticoagulant drugs and diuretics if needed has been confirmed even if controlled studies are lacking. The vasoreactivity test is also mandatory to identify the minority of patients with a favorable acute response (approximately 20%). In this group, a chronic treatment with high doses of Ca++-channel blockers is justified but clinical, functional, and hemodynamic improvements need to be confirmed after 3 to 6 months with formal noninvasive and invasive investigations. In patient nonresponders to acute vasoreactivity tests or responders with no favorable effect of chronic Ca++-channel blocker treatment who are in NYHA functional class III treatment with an endothelin receptor antagonist (ERA) or with a prostanoid is indicated. Up to now the only commercially available and approved ERA is the oral dual antagonist bosentan that has been successfully tested in two controlled clinical trials. The ETα selective ERA sitaxentan has been tested in an uncontrolled and a controlled trial and a second study is ongoing, while the ETα selective ERA ambrisentan has been tested in an uncontrolled trial and controlled studies should be implemented soon. Among prostanoids, treprostinil, administered subcutaneously has been approved in the USA; it was tested in two controlled clinical trials and only in one was the primary end point fulfilled. Among prostanoids, treprostinil, ambrisentan has been tested in an uncontrolled clinical trial and controlled studies should be implemented soon. Among prostanoids, treprostinil, administration of epoprostenol should be considered (two controlled clinical trials with favorable results) because the best effects on survival are observed in this functional class.

Continuous intravenous administration of epoprostenol is the treatment of choice in patients in NYHA functional class IV, and it is approved in the United States and in Europe. In these cases also bosentan and treprostinil have an official approval by the FDA but given the small number of patients included in the clinical trials the experts consider these treatments as a second choice. Iloprost administered intravenously is approved in New Zealand, even though no controlled trials are available.

Continuous intravenous administration of epoprostenol may be indicated also in NYHA class III patients who have no favorable response with ERAs or to other prostanoids.

Combination therapy (eg, ERA plus prostanoids) has to be considered in any case of no improvement or deterioration with the first treatment even if data on this specific strategy are few and uncontrolled. Appropriate protocols for timing and dosing to limit possible side effects of the combination have still to be determined.

In case of failure and/or unavailability of medical treatments, balloon atrial septostomy and/or lung transplantation are indicated. These procedures should be performed in experienced centers.
Powerful Medicine.

That’s what patients need when living with Pulmonary Arterial Hypertension (PAH). And that is what they will get when you refer them to Accredo Therapeutics, Inc.

As the only national provider of all three FDA-approved PAH therapies (Flolan®, Remodulin® and Tracleer®), Accredo Therapeutics’ staff of clinicians has extensive experience and expertise in providing care for patients requiring these complex therapies.

When you choose Accredo Therapeutics to care for your PAH patients, you get more than just medicine. You get an array of services customized to the unique care needs of your patients, such as:

- Clinicians Focused and Specifically Trained in PAH Therapies
- Extensive Network of Local Pharmacies to Clinically Manage Patients
- National Customer Support Center Providing 24-Hour Access to Clinical Support for Patients, Family Members and Caregivers
- Specific Support Programs for PAH Patients
- A Team of Reimbursement Specialists to Assist with Insurance and Claims

For more information on our Pulmonary Arterial Hypertension services, please contact us at 866.FIGHT.PH.

Accredo Therapeutics™
Focused on Innovative Care
Acute Vasodilator Testing in PAH

Olivier Sitbon, MD
Centre des Maladies Vasculaires Pulmonaires,
Service de Pneumologie et Réanimation Respiratoire, Hôpital Antoine-Béclère,
Université Paris-Sud, Assistance Publique-Hôpitaux de Paris, Clamart, France

Vasoconstriction of pulmonary arteries is recognized as an important component of the pathogenesis of pulmonary arterial hypertension (PAH). Pure vasodilators alleviate vasoconstriction with little effect on the fibrotic and proliferative changes that frequently predominate over vasoconstriction in PAH. Uncontrolled studies have suggested that long-term administration of calcium-channel blockers (CCBs) prolongs survival in the rare subset of responsive patients (representing around 10% of patients referred to pulmonary vascular centers), compared with unresponsive patients. Therefore, the question of the overall efficacy of administering CCBs is still of concern, as well as the way of safely identifying the patients who may benefit from long-term oral treatment. Unfortunately, any clinical or hemodynamic parameter can predict acute and chronic responses to CCBs in patients with PAH. It is generally accepted that patients who may benefit from long-term use of CCBs can be identified by an acute vasodilator challenge performed during right heart catheterization in specialized pulmonary vascular units.

The magnitude of acute vasodilator response that predicts a favorable outcome with long-term CCB therapy remains poorly defined. Until recently, a reduction of both mean artery pulmonary pressure (mPAP) and of pulmonary vascular resistance (PVR) by at least 20% was used as the criterion for the initiation of oral CCB therapy. A drop in mPAP by more than 10 mm Hg without decrease in cardiac output could be the minimum acceptable response. A decrease in PVR of 50% relative to baseline value and an mPAP lower than 30 mm Hg could indicate better clinical outcome. However, these definitions do not discriminate between patients with a sustained benefit from CCBs (defined as being in NYHA functional class I or II with near-normal hemodynamics after at least one year follow-up) and those whose condition will fail to improve. In our experience, only 7% of patients referred to a specialized pulmonary vascular center with idiopathic PAH will have a sustained benefit from treatment with CCBs. During acute vasodilator challenge, these rare patients markedly improve their pulmonary hemodynamics, achieving an mPAP less than 40 mm Hg, and associated with a normal or high cardiac output. We therefore consider that a positive response to acute vasodilator challenge is defined by a substantial reduction in mPAP (decrease exceeding 10 mm Hg to reach an mPAP lower than 40 mm Hg) with a normal or high cardiac output. The occurrence of severe life-threatening hemodynamic compromise during acute vasodilator challenge with CCBs is an obvious risk, even when conventional doses of CCBs are used. Therefore, there is a need for a safe, potent, and short-acting vasodilator having limited side effects during acute testing to accurately identify patients who may benefit from long-term CCB therapy. In the therapeutic approach of patients with PAH, numerous vasodilator agents have been used on a short-term basis to evaluate the capacity of the pulmonary vascular bed to vasodilate. Among them, prostacyclin, adenosine, and nitric oxide are the most widely used drugs. Recent data suggest that inhaled iloprost may be more effective than nitric oxide to decrease PVR. However, no information is available regarding acute response to iloprost as a predicting factor to long-term efficacy of CCB therapy.

With emerging potent oral and inhaled drugs combining vasodilatory and antiproliferative properties, the issue of invasive testing for pulmonary vasoreactivity in selecting treatment may lose its importance. It should be easy to prescribe oral therapies such as an endothelin receptor antagonist (bosentan), a prostacyclin analogue (beraprost), or a phosphodiesterase inhibitor (sildenafil) to all PAH patients whatever their functional class (except for class IV) and acute pulmonary vasoreactivity. Although it is reasonable to think that patients who respond to intravenous prostacyclin, adenosine, or inhaled nitric oxide are able to respond to such oral therapies, no study has evaluated the acute and chronic response to these drugs in vasoreactive patients. In addition, the cost of these therapies could be a limitation to their prescription in some PAH patients.

In conclusion, the drugs of choice for testing vasoreactivity are short-acting agents, intravenous prostacyclin, adenosine, or inhaled nitric oxide. Long-term treatment with oral CCBs will be considered only in responders to one of these three drugs.
Recent advances in medical and interventional approaches to the management of patients with pulmonary arterial hypertension (PAH) have had a marked effect on the policy for referring such patients for transplantation and there has been a reduction of 50% in numbers of patients with primary pulmonary hypertension (PPH) undergoing transplantation over the last decade. In practice patients are being referred at a later stage, often in decompensated right heart failure. Such patients present a major challenge to both peri- and postoperative management, with some centers identifying the need for elective ECMO support or at least prolonged ventilatory support. The prognosis of patients presenting with WHO class III and IV symptoms has been improved by both prostaglandin and endothelial antagonist therapy. But not all patients show a significant response, so the concept of assessing a patient with advanced disease, listing when appropriate and de-listing if there was a significant response to medical therapy such that the patient improved to WHO class II on symptoms, was supported. The literature supports that transplant centers currently show wide variation in their approach to indications for and timing of lists. It is clear that close communication between PAH centers and transplant centers is very appropriate.

The results of transplantation for patients with severe pulmonary hypertension (PH) as documented in the International Society for Heart and Lung Transplantation registry data are significantly less good than for patients with respiratory failure due to other causes. It was concluded that transplantation for patients with PH might be best limited to specialist transplant centers with specific interests and skills in treating such patients, rather than being offered by a transplant center, and that such an approach might best fulfill the needs of our patients. It was recognized that the problem of donor lung shortage had led to the need to use marginal lungs from older donors, and that this practice was a particular risk for patients with pulmonary vascular disease.

No true consensus was established with regard to the operation of choice for patients with PH. There was a broad body of literature supporting single lung, bilateral lung, and heart-lung procedures for these patients. It was accepted that patients with Eisenmenger syndrome associated with complex congenital heart disease could not be repaired during an isolated lung transplantation procedure and required heart-lung transplantation. There was a trend to supporting the concept of transplanting two lungs rather than one in patients with advanced disease with established right heart failure. However, it was accepted that specialist centers would carry out whichever type of operation they felt was most appropriate for an individual case. It was also accepted that individual differences would occur given differences in thoracic organ allocation and availability.

The recent UNOS guidelines relating to organ allocation to patients with PH in the United States were discussed and it was felt that the proposed walking distance of 160 feet as an arbiter of clinical need and benefit regarding transplantation was too low and incompatible with satisfactory outcomes.

It was recognized that the development in molecular biology offered unrivaled opportunity to help understand underlying mechanisms leading to PPH and associated conditions and that lungs removed at transplantation offered an important resource for research. It was proposed that attempts should be made to ensure that all lungs removed at surgery should be stored in tissue banks and made available to the many individual laboratories worldwide to foster basic research in this area. It was regrettable that lungs from patients transplanted for PH were not systematically being stored. Finally, brief guidelines regarding referral and listing are summarized below.

- WHO class III patients with 6-minute walk distance >332 meters: Treat medically and refer for transplant if no clinical improvement over 3 months.
- WHO class IV patients with 6-minute walk distance <352 meters: Assess and list immediately for transplantation, treat medically, and de-list if improvement over 3 months to class II. Deteriorating patients may be considered for septostomy as a bridge to transplantation.
- Hemodynamic markers of adverse outcome are right atrial pressure >15 mm Hg, cardiac index <2 L/min/m², and mixed venous oxygen saturation of ≤63%.

Thromboendarterectomy

There was a clear consensus that patients with PH due to chronic thromboembolic disease should be assessed for thromboendarterectomy and it was proposed that the name of this operation should be changed to pulmonary endarterectomy. This suggestion was made because by the time of surgery no true thrombus remained. It was recognized that more experienced centers worldwide were carrying out successful surgery in patients with severe distal disease as well as proximal disease, a technically more challenging procedure. Discussion concerned the presence of vasculopathy similar to that seen in PPH in the vessels of patients with chronic thromboembolic hypertension unaffected by previous thrombi. Mechanisms leading to...
this vasculopathy are not understood at present but it did provide a rationale for consideration of medical therapy with prostaglandins and endothelial antagonists in some patients prior to definitive surgery. The worldwide results of thromboendarterectomy are good, and prognosis and health-related quality of life in such patients are much improved by this operation.

References
on the echocardiographic and Doppler parameters in PAH patients.

Academically, he earned appointments as Associate Professor of Cardiology on the Medical Faculty at the University of Bologna and Professor at the Postgraduate Medical Schools of Pulmonary Diseases and of Cardiology at the same University. He has served as past chairman of the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology, and he is also a member of the Scientific Council of this Society.

Much of his time in recent years has been consumed with organizing the sessions of the World Symposium on Pulmonary Hypertension, including the Evian conference in 1998 when he served on the Task Force on Medical Treatment. The excitement generated by this year’s Third World Symposium on Pulmonary Arterial Hypertension in Venice—which produced a consensus on many key issues affecting diagnosis and treatment—will continue as new options in therapy are explored and delineated in the reports emerging from this meeting. Many of the consensus statements will serve as the basis for revising the guidelines for treating PAH.

Looking ahead to these developments, Dr Galiè predicted many advances in basic science and therapy during the next 5 to 10 years. “We need to identify the precise link between the mutation of the gene responsible for familial idiopathic PAH. We have the disease on one side and the mutation on the other—what lies between is still unknown, yet critical to understanding the disease. New treatments have been focused on correcting the changes in different pathways, including the endothelin pathway, the prostacyclin pathway, the nitric oxide pathway, and in the future perhaps the serotonin pathway. In addition the appropriate strategy for the combination of these therapies represents an important challenge for the coming years.”

(continued from page 3)

International Pulmonary Hypertension Conference

Pulmonary Hypertension Association
June 24-25, 2004, Miami, Florida

Call for Abstracts

• Poster Session: Abstracts invited in areas of Clinical Science (including treatment) Basic Science
• 5 Abstracts will be selected for oral presentation
• Award for top presentation in both Clinical & Basic category
• Summary of top presentations in future issue of Advances in Pulmonary Hypertension

Submission Deadline: February 15, 2004
Notification Date: March 15, 2004

For submission instructions visit the PHA website at: www.phassociation.org/abstracts

For Scientific Session and Annual Meeting information, visit: www.phassociation.org/Conference/
The Venice Symposium was a unique assemblage of physicians and scientists representing a variety of disciplines ranging from pulmonary medicine to cardiology, rheumatology, pathology, genetics, molecular biology, and surgery, all with a common interest in pulmonary vascular disease. The state-of-the-art overviews provided not only a perspective of where we are and how we got there, but also glimpses into the future of new and exciting directions in basic and translational research. The opportunity for basic investigators, clinical researchers, and representatives from industry to interact and explore new avenues to pursue will undoubtedly lead to fruitful collaborations and innovative approaches to the understanding, and ultimately the cure, of hypertensive pulmonary vascular disease. It is remarkable that, despite the attendance by several hundred individuals, a consensus on major issues was reached, including the adoption of a revised nomenclature. - Lewis Rubin, MD, University of California at San Diego.

Commentary on the Venice Meeting, featuring an interview of Nazzareno Galiè, MD, one of the organizers of the Third World Symposium on Pulmonary Hypertension. Victor Tapson, MD, is Editor-in-Chief of Advances in Pulmonary Hypertension.

Dr Tapson: Nazzareno, would you give us an overview of this meeting and how you would compare it with other sessions?

Dr Galiè: This meeting was a challenge because we tried to combine the concepts of the Evian meeting based on task force discussions with more conventional scientific presentations in front of a larger audience. It was a challenge because the plenary presentations to a wide audience were really prepared during the task force meeting. This was difficult because the time allowed was not infinite and we forced competitive scientists with different ideas to reach a consensus on “hot” topics and to have this consensus written and definite before the plenary presentation. The real success was this: we forced and we obtained this consensus between the task force members because during the plenary presentation only attending people asked additional questions. There was not additional discussion among the task force members. This means that the consensus was reached.

Dr Tapson: Did you think there were any big surprises or controversies with the meeting that were difficult to resolve?

Dr Galiè: I don’t think so. There were challenges because in some task forces—for example, genetics, we put together people who were “scientifically” competing among themselves for the last 3 or 4 years. This has been important because they had consensus to collaborate, to define some common research strategies for the future. This was another success. Another surprise was the consensus we reached on the treatment algorithm. I thought it would have been very difficult to get a consensus between people in Europe and the United States because the approved drugs and experiences are somewhat different. Nevertheless, we reached a good compromise in the treatment algorithm.

Dr Tapson: Despite initial differences, it’s impressive to make those agreements when practices can be quite different. There are certain obvious things like the use of inhaled prostacyclin, iloprost in some countries. Were there any international differences that were really significant in terms of diagnosis and treatment?

Dr Galiè: The main difference is that in the United...
Dr Tapson: Did you get a sense from the task force on pathology and pathobiology that there is any one disease mechanism that people seem to agree is the most important or that there is any trend in priorities of the most important mechanism?

Dr Galiè: No, we didn’t find a particular mechanism that can be considered more important than any other. We have the problem related to the endothelial dysfunction, to all the changes in the NO, prostacyclin, or endothelin pathways. We have the serotonin hypothesis. This is coming back because of the genetics. Serotonin transport can explain some differences in the development of pulmonary hypertension in subgroups such as those with HIV or people with portal pulmonary hypertension. I think also the TGF-beta pathway has been studied a lot because of the mutations found on that type of receptor. But I haven’t found a pathway that has been more explored than any other.

Dr Tapson: So the concept of combination therapy is still going to be important in the future?

Dr Galiè: Yes, this is the rationale for the combination therapy. It is linked to the multiple changes in the different pathways. The concept of combination therapies is quite complex because you combine drugs but you also can combine side effects. We cannot forget that all the drugs we are using in pulmonary hypertension are also systemic vasodilators. So you combine many systemic vasodilators and this combination may be detrimental for blood pressure. In any case, this is a problem that can be addressed by an appropriate dosing and timing strategy.

Dr Tapson: Along the lines of treatment, one of the tough topics for me has been the timing of transplantation. Do you think we came to any more consensus?

Dr Galiè: This is another challenge that is linked to the length of the waiting list. If we could rely on a definite mean time for the waiting list (for example 6 months) we could wait until the patient’s condition has deteriorated to the level at which the expected survival is approximately 6 months. But this is not the case. You know that the waiting list is usually longer than 12 months and up to 18 to 24 months. This is why it is difficult to include in a treatment algorithm the lung transplantation intervention. How can you decide to put a patient on a waiting list 18 to 24 months before the transplantation? Anything can happen in 18 to 24 months. Despite this, the long-term experience with Flolan published recently by Valerie McLaughlin (Chicago) and by Olivier Sitbon (Paris) showed that the people who have not shown an adequate hemodynamic or exercise capacity improvement after 3 to 4 months of therapy need to be listed for lung transplantation. For example, if the patient cannot walk more than 350 meters, he or she should be considered for listing for lung transplantation because this is a negative prognostic factor. This is probably what we will implement in the future. Maximized medical treatment, including combination therapy. If you cannot obtain a good hemodynamic profile and an exercise capacity above a defined level, they are likely candidates who should be listed.

Dr Tapson: Let’s backtrack for a second. In terms of genetics, do you have a sense of who should be tested for BMPR-2 mutations? Do you test families or do you have a sense of what we should do?

Dr Galiè: I don’t think we have a consensus about this. It’s still a matter of research. Genetics is still a research tool, not something you can use in clinical practice. Even if you identify a mutation in family members who do not have pulmonary hypertension, you do not know if they will ever develop pulmonary hypertension. And in any case, if you tested such patients who are otherwise healthy and you reported to them that they have the mutation you can completely change their lives. For scientific and ethical reasons, we believe that genetic testing does not currently play a role in clinical practice for pulmonary hypertension.

Dr Tapson: That seems to be the consensus of most. It sounds like most people think we should be careful about how we’re using genetic testing at this point. It was a fantastic meeting. What does the future hold?

Dr Galiè: We look forward to the proceedings being published. We will not have another meeting for some time. It’s like the Olympics. We need to wait maybe another 4 years.
November is **Pulmonary Hypertension Awareness Month**

This year’s theme is **Pulmonary Hypertension: The Other High Blood Pressure**. The more people are aware of the seriousness of this illness, the more support they will offer. In addition, with increased awareness among the general public and medical professionals, more people will be diagnosed early.

If you would like to help raise awareness about pulmonary hypertension, please consider the following options:

- Host a Q&A session at your local hospital
- Order and distribute printed materials from Pulmonary Hypertension Association to your patients
 - Display an awareness month poster in your office and/or hospital
 - Be the guest speaker at a local support group. Visit http://www.phassociation.org/SupportGroups/ to find a support group near you

For additional ideas, order a complete Awareness Month Action Kit, available now! Contact Cara Ugolini at (301) 565-3004 x113 or cara@phassociation.org or visit the website at http://www.phassociation.org/Awareness/AwarenessMonth.asp

The Pulmonary Hypertension Association announces the **2004 Postdoctoral Fellowship Awards Application Process**

$30,000 stipend per year/$5,000 project support per year for two years

Application Deadline: January 15, 2004

Award Notification: June 1, 2004

Award Activation: July, 2004

Suggested investigation topics include, but are not limited to:

- Genetics
- Molecular biology of pulmonary vascular endothelium
- Development of new pharmacologic agents to treat PH
- Development of innovative techniques for early diagnosis
- Pathophysiology of right heart failure
- Epidemiology of risk factors for developing PH

For More Information Visit
www.phassociation.org/support/researchfunding.htm